0=320-16t^2-0

Simple and best practice solution for 0=320-16t^2-0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=320-16t^2-0 equation:



0=320-16t^2-0
We move all terms to the left:
0-(320-16t^2-0)=0
We add all the numbers together, and all the variables
-(320-16t^2-0)=0
We get rid of parentheses
16t^2-320+0=0
We add all the numbers together, and all the variables
16t^2-320=0
a = 16; b = 0; c = -320;
Δ = b2-4ac
Δ = 02-4·16·(-320)
Δ = 20480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20480}=\sqrt{4096*5}=\sqrt{4096}*\sqrt{5}=64\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64\sqrt{5}}{2*16}=\frac{0-64\sqrt{5}}{32} =-\frac{64\sqrt{5}}{32} =-2\sqrt{5} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64\sqrt{5}}{2*16}=\frac{0+64\sqrt{5}}{32} =\frac{64\sqrt{5}}{32} =2\sqrt{5} $

See similar equations:

| 2h^2+8h-128=0 | | 11x+5=4x+8-1 | | 240/(x-6)=T+20 | | 5x+2–2(x–1)=3x+4 | | h^2-8h-48=0 | | (240/(x-6))-(240/x)=20 | | 5x-35=7x-35 | | 3x+11=54 | | 0.6x-1.3=0.2(5x-8) | | -x+20=5(3x+2)-6 | | -4x-12=4(3x+1) | | 3x-27=3(2x+1) | | -8x+2=-3x+37 | | 6x+25=11x+65 | | -48=3(5x+4) | | -8x-3=-4x+9 | | 4(x-2)+10=2x+14 | | 238.73=x+x^2 | | 43=3(2x+3)+4 | | 4x^2+24x=60 | | 7(k-7)=2(11k) | | 6x+68=-16 | | 8a+a-3=6a-2a | | 5x^2+6x-4.9=0 | | 7a+4=32(-4) | | 5x*3=6x+10 | | 5(-3×+1)=-14(x+1) | | 5(z+8)+12=3z-10 | | 10^11x=10^12x | | (5x+3/4x+3)=11/9 | | 4(4x-4)-15x=4 | | 3x-7*2=4x*2 |

Equations solver categories